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Percolation in a random environment

Róbert Juha´sz1,2 and Ferenc Iglo´i1,2,3

1Institute of Theoretical Physics, Szeged University, H-6720 Szeged, Hungary
2Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O.Box 49, Hungary
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We consider bond percolation on the square lattice with perfectly correlated random probabilities. According
to scaling considerations, mapping to a random walk problem and the results of Monte Carlo simulations the
critical behavior of the system with varying degree of disorder is governed by new, random fixed points with
anisotropic scaling properties. For weaker disorder both the magnetization and the anisotropy exponents are
nonuniversal, whereas for strong enough disorder the system scales into aninfinite randomness fixed pointin
which the critical exponents are exactly known.
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I. INTRODUCTION

Percolation is a paradigm for random processes@1#, in
which the i th bond~or site! of a regular lattice is occupied
with a probabilitypi which is generally taken independent
its position,pi5p. In percolation theory one is interested
the properties of clusters, in particular in the vicinity of th
percolation transition pointp5pc , when clusters with di-
verging size are formed. Using a close analogy with therm
phase transitions, which is based on theQ→1 limit of the
ferromagneticQ-state Potts model@2#, a scaling theory has
been developed and in two dimensions many, conjectur
exact results have been obtained by conformal field the
@3# and by Coulomb-gas methods@4#.

In real systems, however, the occupation probabilities
generally inhomogeneous, i.e., position, direction or nei
borhood dependent, and there are some correlations bet
them. The effect of quenched disorder, i.e., when the oc
pation probabilities are position dependent random variab
can be studied by scaling considerations. According to
Harris criterion@5# the relevance or irrelevance of the effe
of quenched disorder on the percolation transition depe
on the sign of the specific heat exponenta of the correspond-
ing pure Potts model in theQ→1 limit. Since in any dimen-
sion a,0 @1#, the critical properties of ordinary and ‘‘ran
dom’’ percolation are equivalent. Another form o
perturbations, e.g., long-range correlations between occ
tion probabilities@6# or anisotropy, such as in directed pe
colation @7#, however, leads to modified critical properties

In the present paper we consider the combined effec
disorder, anisotropy, and correlations, when the occupa
probabilities are random variables, which are perfectly c
related in add dimensional subspace. This type of behav
could be relevant to describe the properties of oil or g
inside porous rocks in oil reservoirs, when the rock ha
layered structure@8#. For related earlier work see Ref.@9#.

Models with perfectly correlated disorder play an impo
tant rôle in statistical physics and in the theory of~quantum!
phase transitions. Among the early work we mention the p
tially exact solution of the McCoy-Wu model@10# ~which is
the two-dimensional Ising model with layered randomne!
and the field-theoretical investigations by Boyanovsky a
1063-651X/2002/66~5!/056113~7!/$20.00 66 0561
al

ly
ry

re
-
en

u-
s,
e

ds

a-

of
n

r-
r
s
a

r-

d

Cardy @11#. As a matter of fact in random quantum system
disorder is perfectly correlated along the~imaginary! time
direction, i.e., heredd51. For these systems, in particula
for random quantum spin chains, i.e., in (111) dimension,
many new, presumably exact results have been obtained
cently by a strong disorder renormalization group~SDRG!
method@12#. It was found that for strong enough initial dis
order the critical behavior of several systems is governed
a so-called infinite randomness fixed point~IRFP! @13#, with
unusual scaling properties. Here we mention recent calc
tions on the random transverse-field Ising model~RTIM!
@14,15#, random quantum Potts and clock models@16#, ran-
dom antiferromagnetic Heisenberg spin chains@17,18#, and
ladders@19# and also nonequilibrium phase transitions in t
presence of quenched disorder@20#. In many cases a cross
over between weak and strong disorder regimes has b
observed and a general scaling scenario has been prop
@21#.

In the present paper, we study percolation on a squ
lattice with strip random occupation probabilities. We inve
tigate the critical behavior of the system with varyin
strength of disorder by scaling considerations, by rand
walk mappings and by Monte Carlo~MC! simulations. The
structure of the paper is the following. The model and t
relevant physical quantities are introduced in Sec. II. Inv
tigations in the weak and strong disorder limits are given
Sec. III, MC simulations for intermediate disorder are p
sented in Sec. IV. The paper is concluded by a discussio
Sec. V.

II. THE MODEL

We consider bond percolation on a square lattice w
sites $ i , j %, 1< i<L and 1< j <K, where the occupation
probabilities, 0,p,1, are random variables, which are pe
fectly correlated~identical! along vertical lines as indicate
in Fig. 1. If the average value of the occupation probabilit
exceeds a critical valuêp&.pc there is a percolation tran
sition in the system. The value ofpc can be determined by
noticing that under a duality transformation, which maps
ordered and the disordered phases of the system into
other, the layered structure of the system is preserved and
©2002 The American Physical Society13-1
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dual value of the local probability is transformed as:p̃51
2p @22#. Consequently the probability distribution,P(p), is
transformed intoP̃( p̃)5P(12p) and the random system i
self-dual, if the probability distribution is symmetric:P(p)
5P(12p) and thus the average value ofp is given by^p&
5pc51/2. Since there is one phase transition in the syst
the self-duality point corresponds to the critical point and
distance of the critical point,t is defined as

t5^p&2pc . ~1!

In the presence of quenched disorder the mean value
physical observableF is calculated as@^F&#av, where
^•••& denotes thermal averaging for a given realization
the disorder and@•••#av stands for disorder averaging. I
percolation the basic quantities of interest are the fractal
connectivity properties of the largest clusters. In the follo
ing we use the concept of anisotropic scaling@23#, when the
correlation lengths in the two directions,~which correspond
to the extensions of the largest clusters! involve different
critical exponents:j';utu2n' andj i;t2n i. Thus the anisot-
ropy exponent

z5
n i

n'

~2!

is generally different from one. In the ordered phase,t.0,
the number of points belonging to the infinite clusterN0
scales around the transition point as

N05LKtbÑ~Ltn',Ktn i!, ~3!

whereb is the critical exponent of the order parameter.
the critical point,t50, fixing the ratioK/Lz5O(1) we ob-
tain

N0;Ld';Kdi, ~4!

FIG. 1. Percolation on the square lattice with random bond
cupation probabilities, which are perfectly correlated along the v
tical direction. The portion of the lattice having the same occupa
probability p is denoted by bold lines, whereas the correspond

part of the dual lattice withp̃512p is shown by dashed lines.
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,
e

f a

f

d
-

t

where the two fractal dimensions of the infinite cluster a
given by

d'511z2b/n' ~5!

anddi5d' /z. The distribution of cluster sizesR(N) at the
critical point asymptotically behaves as

R~N!dN5N2tR̃~N/Ld'!dN, ~6!

where t521b/(n'd'). This relation can be obtained b
generalizing the similar result for ordinary percolation@1#.

Correlation between two sites with coordinates,$ i 1 , j 1%
and $ i 2 , j 2%, is defined as the expectation value of the co
nectivity, d($ i 1 , j 1%,$ i 2 , j 2%), which is 1, if the two sites be-
long to the same cluster and zero otherwise. Here we ma
consider correlations in the perpendicular direction

C'~ i 1 ,i 2!5
1

K (
j 51

K

@^d~$ i 1 , j %,$ i 2 , j %!&#av, ~7!

where an average over the vertical coordinate,j 15 j 25 j is
also performed. When correlations in the bulk are calcula
we use periodic boundary conditions~BC!, ~thus i 5L11
[1), take maximal distance between the sites,i 25 i 1
1L/2, and average over the positioni 1. The average bulk
correlations, calculated in this way, scale at the critical po
as

C'
b ~L !;L2h', ~8!

whereh'52b/n' . We also considered the system with fre
boundaries ati 51 and i 5L and calculated the correlation
between two surface sites. This end-to-end correlation fu
tion at the critical point asymptotically behaves as

C'~1,L ![C'
s ~L !;L2h'

s
, ~9!

where the decay exponenth'
s is related to the surface fracta

properties of the infinite cluster. Closing this section w
quote the values of the critical exponents for tw
dimensional ordinary percolation@24#

n (0)54/3, h (0)55/24, hs(0)52/3. ~10!

III. STRENGTH OF DISORDER: LIMITING CASES

The strength of disorderD is related to the broadness o
the probability distribution,P(p). In terms of the integrated
probability distribution,P(p)5*0

pP(p8)d p8, we introduce
the probabilities,p1/4 and p3/4 with the definitions:P(p1/4)
51/4 andP(p3/4)53/4. Since the central half of the distr
bution is located in the region:p1/4<p<p3/4 its relative
width is measured by

D5
p3/42p1/4

12p3/41p1/4
, ~11!

what we can identify with the strength of disorder.
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In this paper, we used two specific forms of the distrib
tion. For the bimodal distribution (0<q<1/2,q̄512q):

Pbin~p!5
12t

2
d~p2q!1

11t

2
d~p2q̄!, ~12!

the critical point is located att50 and the strength of disor
der is given byDbin5(122q)/2q. Thus, as expected th
bimodal disorder is weak forq'1/2 and strong forq!1/2.

The other distribution we use has a power-law form

Ppow~p!5
1

D2p̄
S p

p̄
D 2111/D

0,p, p̄,1, ~13!

andPpow(12p)5Ppow(p) p̄/(12 p̄), for p̄,p,1. The dis-
tance from the critical point is measured byt5( p̄

21/2)/(D11), and forp̄51/2, i.e., fort50 the distribution
is indeed symmetric. In this case the strength of disorde
given byDpow52D21. Thus forD50 we recover the ordi-
nary percolation and the strength of disorder is monoto
cally increasing withD. Therefore,D will be often called as
the disorder parameter of the distribution.

A. Weak disorder

In the limit of weak disorder one usually decides abo
the relevance-irrelevance of the perturbation by performin
stability analysis at the ordinary percolation fixed point. Ge
eralizing the method by Harris@5# the crossover exponen
due to correlated disorder is calculated as

f522n (0)52/3, ~14!

where we usedn (0)54/3 in Eq.~10!. Sincef.0, even weak
correlated disorder is a relevant perturbation, thus a new
dom fixed point is expected to control the critical behavior
the model.

B. Strong disorder: Mapping to random walks

Next we turn to study the behavior of the system for e
tremely strong disorder using the bimodal distribution in E
~12! in the limit q→0. In this limiting case the percolation i
a given layer with a probabilitypi has a simple, anisotropi
structure~for an illustration see Fig. 2!. If this probability is
extremely large,pi5q̄, then here almost all bonds are occ
pied, except of a very small fraction ofq. Since the typical
distance between two nonoccupied bonds isl;1/q, the clus-
ter in the i th layer is composed of long connected units
typical size l. On the other hand, if the probability is ex
tremely small,pj5q, then almost all bonds in this layer ar
unoccupied, except of a very small fraction ofq. Since the
typical distance between two occupied bonds isl;1/q, the
cluster in thej th column is composed from long empty uni
of typical sizel. Notice the duality in the structure of the tw
types of column.

With this prerequisite we consider the order paramete
the surface column,ms(L), which is the fraction of surface
sites belonging to a cluster of horizontal extentL. In order to
05611
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make a statement about the value ofms(L) we consider par-
allel strips of widthk<L and introduce the quantity,nk , as
the typical number of bonds at thekth ~i.e., surface! column
of a cluster, which is connected to the other surface of
strip. Starting withk51 we have two possibilities. For ex
tremely small probabilityp15q there is no surface cluster i
the system, thus we haven150. Otherwise, forp15q̄, a
surface site is connected to all sites of a ‘‘connected unit’’
lengthl, thus we haven1; l;1/q. Fork52, if the probabil-
ity is extremely large in the second layer, too,p15p25q̄,
then a surface cluster extends up to the second layer an
vertical size, which is given byn2, can be estimated as fol
lows ~see Fig. 2!. The end of a cluster is signalled by the fa
that in both columns unoccupied bonds are in neighbor
positions, which happens with a probabilityq2, from which
the typical size of a clustern2;1/q2;n1 /q, follows. Re-
peating this argument forpi5q̄, i 51,2, . . . ,k we obtain
nk;1/qk;nk21 /q. Now having a small probability at the
following layer, pi5q̄, i 51,2, . . . ,k and pk115q, then
only a fraction ofq of the sitesnk have a further connection
thus nk will be reduced by a factorq giving nk11;nkq.
Inclusion of any further layer with an extremely small pro
ability will reduce nj by a factor ofq, until we arrive at
nj 85O(1), when for the next small probability layer w
havenj 81150, thus the surface cluster ends at this distan

From this example we can read that thenk numbers are
either integer powers of 1/q, nk;1/qXk, for Xk50,1, . . . , or
nk50, if formally Xk,0. Furthermore, we have the tran
formation rules

nk11;H nk /q, pk115q̄

nkq, pk115q,
~15!

FIG. 2. Structure of the percolation cluster in the extreme bim

dal distribution withp15p25q̄ and p35p45p55q ~here withq
'1/4). In a layer with extremely large~small! probability there are
connected~empty! units of typical lengthl;1/q. The number of
sites of the connected cluster at the other surface of a strip of wi
k, nk is given byn1;1/q, n2;1/q2, n3;1/q, andn45O(1) ~see
text!. In the limit q→0 the cluster ends atk54, thusn550.
3-3
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where in the second casenk1150, if nk5O(1). At this
point we can formulate the condition that the surface or
parameter in a given sample~in a rare realization! is ms(L)
5O(1), if nk>O(1), for all k51,2, . . . ,L. For all other
casesms(L)50. Consequently to calculate theaverage
valueof ms(L) it is enough to find the fraction of rare rea
izationsrL

s for which ms(L)5O(1), since @ms#av;rL
s . To

calculaterL
s we use a random walk~RW! mapping~see an

illustration in Fig. 3!, in which to each disorder realizatio
we assign a one-dimensional RW, which starts atX050 and
takes itskth step upwards,xk51 ~downwards,xk521) if
the corresponding bond occupation probability is extrem
large, pk5q̄ ~extremely small,pk5q). The position of the
walker at thekth step,Xk5( i 51

k xk is related tonk as nk

'q2Xk. Then, as argued before, the surface cluster exte
upto a vertical distanceL if Xk>0, for everyk51,2, . . .L,
i.e., the RW has a surviving character.

At the critical point of the percolation problem,t50, the
corresponding RW is unbiased, and the fraction of surviv
L-step RWs scales asrL

s;L21/2. Now the fraction of clusters
which connect the two free boundaries of the strip ove
distanceL, and thus contribute to the average end-to-e
correlations in Eq.~9!, is given by (rL/2

s )2, since at each site
there should be an independent percolating surface clu
which meet in the middle of the system. Consequently
average end-to-end correlations at the critical point scal
C'

s (L);L21 thus the corresponding decay exponent in
strong disorder limit is given by

h'
s,(`)51. ~16!

Using the RW mapping one can easily estimate the p
pendicular size of the percolating clusters, which is given
j i(L);nL/2;qXL/2. Since the transverse fluctuations of u
biased surviving RWs scale asXL/2;L1/2 we obtain in the
strong disorder limit

FIG. 3. Illustration of the RW mapping of percolation for
given realization of the extreme binary distribution. Layers w

high, q̄, ~low, q) probabilities are drawn by thick~thin! lines and
the corresponding RW makes a step of unit length upwards~down-
wards!. The position of the RW, in thekth stepXk is related to,nk ,
the number of typical sites in thekth layer of percolation, which are
connected to a given surface site asnk;q2Xk. The surface cluster
extends to a distanceL if Xk>0, for all k51,2, . . . ,L, thus the RW
has a surviving character.
05611
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ln j i;j'
1/2. ~17!

Consequently the anisotropy exponentz in Eq. ~2! is for-
mally infinite for strong disorder.

Other results can be simply obtained by noticing that
same type of RW mapping applies to the one-dimensio
RTIM @25#, too, so that we can simply borrow the resu
obtained in this case.

For bulk correlations one should consider the fraction
realizationsrL for which a given bulk site belongs to a con
nected cluster of vertical sizeL. As was shown in Ref.@26#
for these realizations thethermal averageof the position of
the RW has a surviving character. The fraction of these wa

is given by@27,26#: rL;L2(32A5)/4, consequently the criti-
cal average bulk correlations beingC'

b (L);(rL)2 have a
decay exponent

h'
(`)5

32A5

2
, ~18!

in the strong disorder limit.
Finally, outside the critical point the mapping is related

a biased RW, with a finite drift velocity, which is propo
tional to t. From the surviving probability of biased RWs on
obtains for the correlation length critical exponent@25#

n'
(`)52. ~19!

The scaling exponents and relations in Eqs.~16!–~19! are
identical with those of the IRFP of the one-dimension
RTIM @14#, which is known to control the critical behavio
of several other random quantum spin chains@16,21# and
nonequilibrium phase transitions in the presence of quenc
disorder @20#. At this point our next question is about th
region of attraction of the IRFP. For the RTIM, where th
RW mapping can be generalized for weaker disorder,
small amount of randomness seems to bring the system
the IRFP@14#, which claim is checked by intensive numer
cal calculations@28,25,26#. There are, however, several oth
models@random quantum clock-model, Ashkin-Teller mod
@21#, directed percolation@20#, S51 random antiferromag-
netic spin chains@18#, etc.# where weak disorder is not suf
ficient to bring the system into the IRFP. In these cases ei
the pure systems fixed point stays stable against weak d
der perturbations or the competition between~quantum! fluc-
tuations and weak quenched disorder leads to conventi
random scaling behavior. For the random percolation pr
lem the latter scenario is likely to happen, since the R
mapping cannot be extended for small disorder.~The trans-
formation law for the connected sites,nk /nk21'q or 1/q,
does not hold aroundq'1/2.! We are going to study this
issue numerically by MC simulations in the followin
section.

IV. NUMERICAL RESULTS

For intermediate strength of disorder we studied the p
colation by MC simulations. Since the critical properties
the problem are related to the connectivity properties of cl
3-4
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ters for this purpose we implemented the standard Hosh
Kopelman labeling algorithm@29#. To decide about the shap
of the lattice one should take into account the expected
isotropic scaling properties of the system, since the sca
functions, as in Eq.~3! depend on the ratior 5Lz/K, where
z is an unknown parameter. To overcome these difficul
we used a striplike geometry, whenK@L, thusr'0 for all
strip widths. In practice we hadK5105, went uptoL564
and imposed periodic BC in the vertical direction. For t
distribution of the disorder we used the power-law form
Eq. ~13!, which has turned out to be successful in simi
investigations for random quantum spin chains@21#. Since
averaging in the vertical direction in Eq.~7! ~and also in the
horizontal direction for bulk correlations! is equivalent to a
partial average over quenched disorder it was enough to
sider only a limited number (;10220) realizations.

First, we determine the anisotropy exponentz by calculat-
ing the probability distribution of clusters in Eq.~6!. While
the decay exponentt in Eq. ~6! has only a weak anisotrop
dependence, the scaling functionR̃(y) turned out to be sen
sitive of the value ofz. As we noticed in the numerical ca
culationsR̃(y) has two different regimes. For smaller valu
of the parameter,y5N/Lz,y* , the finite size effects are
negligible and the scaling function is approximately co
stant. Fory.y* , when the largest clusters touch the boun
aries, the scaling function has a characteristic variation. M
suring the position ofy* for different widthsL we obtained
a series of effective anisotropy exponents, which are t
extrapolated toL→`, as shown in the inset to Fig. 4. Th
procedure is repeated for several disorder parameters an
extrapolated anisotropy exponents are plotted in Fig. 4.
fortunately, with this method we could not go to very stro
disorder, while the crossover region cannot be clearly loca
for D.1. However, it is clear from the available data thaz
is monotonically increasing with the strength of disorder a
it is likely that z will be divergent forD.D`'1.221.5.

In order to obtain more information about the critical b
havior of the system we have calculated the bulk and
end-to-end average correlation functions at the critical po

FIG. 4. Estimates for the anisotropy exponent for differe
strength of disorder. The straight lines connecting the points
guides to the eye, forD.D`'1.221.5 the anisotropy exponent i
possibly divergent. In the inset extrapolation of the size-depend
effective anisotropy exponents is shown forD50.25 0.5 0.75, and
1.0, up to down.
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as defined in Eqs.~8! and ~9!, respectively. In Fig. 5 the
average bulk correlationsC'

b (L) vs L is drawn in a log-log
plot. The slope of the curves, which is related to the de
exponenth' has a disorder dependence.

The exponents, calculated in this way together with
decay exponent of the end-to-end correlationsh'

s are plotted
in Fig. 6. As seen in Fig. 6 both exponents are monotonou
increasing with the strength of disorder and tend to satu
at the respective IRFP values, given in Eqs.~18! and ~16!.
The value of disorder strength, where the saturation ta
place, within the error of the calculation, is the same for
two exponents and it is compatible with the estimateD` as
calculated from the divergence of the dynamical exponen
Fig. 4.

We can thus conclude that the critical behavior of t
random percolation process has a weak-to-strong diso
crossover. For weaker disorder,D,D` , what we call the
intermediate disorder regime, the critical behavior of the sys
tem is controlled by a line of conventional fixed points. He
the anisotropy exponent is finite, and together with the ord
parameter exponents,h' andh'

s , monotonously increasing
with the strength of disorder. In thestrong disorder regime,
D.D` , the critical behavior of the system is controlled b
the IRFP. Here the anisotropy exponent is formally infin

t
re

nt

FIG. 5. Average bulk correlations vs the width of the strip f
different strengths of disorder, fromD50 to D51.75 in units of
0.25 from up to down. The typical error is generally smaller th
the size of the symbols for smallD, whereas for largerD it is at
most twice of the size of symbols. The straight lines are least-sq
fits.

FIG. 6. Bulk (h') and surface (h'
s ) decay exponents vs th

strength of disorder. Values at the IRFP, as given in Eqs.~18! and
~16!, are denoted by dashed lines. Two typical error bars are
indicated.
3-5
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and the other critical exponents have no disorder dep
dence.

The nonuniversal nature of the critical behavior in t
intermediate disorder regime is possibly connected to
presence of a marginal operator, which should have van
ing anomalous dimension,xe50, in the entire disorder
range, 0,D,D` . In our case the disorder perturbation
connected to the local energy-density operator, for which
marginality condition, according to the Harris criterion in E
~14! requires the conditionf50, thusn'52. To verify this
scenario we have calculated the average bulk correla
function C'

b (L,t) outside the critical point, at a disorde
strengthD50.75 which is in the middle of the intermedia
disorder regime. According to scaling considerations

C'
b ~L,t !5L2h'C̃~ tL1/n'!, ~20!

thus from an optimal scaling collapsen' can be determined
As shown in Fig. 7 the scaling behavior ofC'

b (L,t) is com-
patible with the conjectured value ofn'52 and thus with the
marginality condition.

V. DISCUSSION

In this paper, bond percolation is studied on the squ
lattice with strictly correlated, layered randomness. T
phase diagram of the problem as a function of the strengt
disorder contains two regions. For strong enough disor
the critical properties of the model are controlled by an IR
the properties of which are exactly known by a RW mappi
For weaker disorder, in the intermediate disorder regime
critical behavior is found to be controlled by a line of co
ventional random fixed points, where both the anisotro
exponent and the order-parameter exponents are disorde
pendent. The correlation length exponent, however, s
constant at its marginal value.

This type of critical behavior is very similar to that ob
tained in a class of random quantum spin chains@21,20#.
This close similarity can be understood by noting the relat
between percolation and theQ→1 limit of the Q-state fer-
romagnetic Potts model. With layered randomness the t
dimensional Potts model in the Hamiltonian limit@30# is
equivalent to a quantum Potts chain, with random coupli

FIG. 7. Scaling plot of the bulk correlation function withn'

52 at a disorder strengthD50.75.
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Ji and transverse fieldshi @31#, the critical behavior of which
can be studied by the SDRG method@16#. In this procedure
the couplings and transverse fields are put in descending
der and the strongest terms are successively decimated
whereas neighboring terms are replaced by renormalized
ues. Decimating the strongest coupling, sayJ2, yields a new
effective spin cluster in a renormalized transverse field
strength

h̃5
2

Q

h1h2

J2
, ~21!

whereh1 and h2 are the original transverse fields acting
the two end-spins ofJ2. Similarly, if, the spin in the stron-
gest transverse fieldh2 is decimated out, then a new reno
malized coupling is generated between remaining sp
which is of the form in Eq.~21!, by interchanginghi↔Ji ,
which is due to duality.

If the disorder is strong enough, so that the system un
renormalization is in the attractive region of the IRFP, t
model specific prefactor 2/Q in Eq. ~21! does not matter and
the critical properties are universal. The region of strong
traction of the IRFP, however, is limited byQ52, i.e., for
the RTIM. For smaller values ofQ, like in percolation, when
the prefactor in Eq.~21! is larger than one, for weak disorde
some renormalized couplings and transverse fields are la
than the decimated ones. If this happens frequently,
when the disorder is too weak, then the SDRG method is
longer valid and the critical behavior of the model is e
pected to be controlled by a conventional random fix
point. This is exactly what we obtained by MC simulation

We conclude our paper with two remarks. First, for stro
enough disorder the critical behavior of both ordinary a
directed percolation@20# is controlled by the same IRFP, thu
the original anisotropy between the two pure problems d
not make any influence about the~strongly! random critical
behavior. Our second remark concerns possible Griffiths
fects in the random percolation problem. Using the analo
with random quantum spin chains for strong disorder so
dynamical quantities of the random percolation problem
singular also outside the critical point. For example the s
ceptibility in a uniform field,H diverges asx;H2111/z8,
and the vertical correlation function decays algebraically
Ci( l ); l 21/z8, where z8 is a finite dynamical exponent
which depends on the distance of the critical point.
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@19# R. Melin, Y.-C. Lin, P. Lajkó, H. Rieger, and F. Iglo´i, Phys.
Rev. B65, 104415~2002!.

@20# J. Hooyberghs, F. Iglo´i, and C. Vanderzande, e-prin
cond-mat/0203610.

@21# E. Carlon, P. Lajko´, and F. Iglói, Phys. Rev. Lett.87, 277201
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