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Percolation in a random environment
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We consider bond percolation on the square lattice with perfectly correlated random probabilities. According
to scaling considerations, mapping to a random walk problem and the results of Monte Carlo simulations the
critical behavior of the system with varying degree of disorder is governed by new, random fixed points with
anisotropic scaling properties. For weaker disorder both the magnetization and the anisotropy exponents are
nonuniversal, whereas for strong enough disorder the system scales infinde randomness fixed poiit
which the critical exponents are exactly known.
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[. INTRODUCTION Cardy[11]. As a matter of fact in random quantum systems
disorder is perfectly correlated along tkienaginary time
Percolation is a paradigm for random procesgHs in  direction, i.e., heredy=1. For these systems, in particular
which theith bond(or site) of a regular lattice is occupied for random quantum spin chains, i.e., in{1) dimension,
with a probabilityp; which is generally taken independent of many new, presumably exact results have been obtained re-
its position,p;=p. In percolation theory one is interested in cently by a strong disorder renormalization groi§DRG
the properties of clusters, in particular in the vicinity of the method[12]. It was found that for strong enough initial dis-
percolation transition poinp=p., when clusters with di- order the critical behavior of several systems is governed by
verging size are formed. Using a close analogy with therma# so-called infinite randomness fixed poifRFP) [13], with
phase transitions, which is based on fe-1 limit of the  unusual scaling properties. Here we mention recent calcula-
ferromagnetioQ-state Potts moddR], a scaling theory has tions on the random transverse-field Ising modeTIM)
been developed and in two dimensions many, conjecturall{14,15, random quantum Potts and clock modgl§], ran-
exact results have been obtained by conformal field theorglom antiferromagnetic Heisenberg spin chdibg,18, and
[3] and by Coulomb-gas metho{k]. ladderg[19] and also nonequilibrium phase transitions in the
In real systems, however, the occupation probabilities ar@resence of quenched disord@0]. In many cases a cross-
generally inhomogeneous, i.e., position, direction or neighover between weak and strong disorder regimes has been
borhood dependent, and there are some correlations betweehserved and a general scaling scenario has been proposed
them. The effect of quenched disorder, i.e., when the occu=21].
pation probabilities are position dependent random variables, In the present paper, we study percolation on a square
can be studied by scaling considerations. According to théattice with strip random occupation probabilities. We inves-
Harris criterion[5] the relevance or irrelevance of the effect tigate the critical behavior of the system with varying
of quenched disorder on the percolation transition dependstrength of disorder by scaling considerations, by random
on the sign of the specific heat exponenof the correspond- walk mappings and by Monte Carl®C) simulations. The
ing pure Potts model in th®— 1 limit. Since in any dimen- structure of the paper is the following. The model and the
sion <0 [1], the critical properties of ordinary and “ran- relevant physical quantities are introduced in Sec. Il. Inves-
dom” percolation are equivalent. Another form of tigations in the weak and strong disorder limits are given in
perturbations’ e.g., |ong-range correlations between occup§ec. Ill, MC simulations for intermediate disorder are pre-
tion probabilities[6] or anisotropy, such as in directed per- sented in Sec. IV. The paper is concluded by a discussion in
colation[7], however, leads to modified critical properties. Sec. V.
In the present paper we consider the combined effect of
disorde.r., .anisotropy, and correlations, .when the occupation Il. THE MODEL
probabilities are random variables, which are perfectly cor-
related in ady dimensional subspace. This type of behavior We consider bond percolation on a square lattice with
could be relevant to describe the properties of oil or gasites{i,j}, 1<i<L and 1<j<K, where the occupation
inside porous rocks in oil reservoirs, when the rock has grobabilities, 6<p<1, are random variables, which are per-
layered structur¢8]. For related earlier work see Ré¢f]. fectly correlated(identica) along vertical lines as indicated
Models with perfectly correlated disorder play an impor-in Fig. 1. If the average value of the occupation probabilities
tant rde in statistical physics and in the theory(@fuantum  exceeds a critical valuép)>p, there is a percolation tran-
phase transitions. Among the early work we mention the parsition in the system. The value @f. can be determined by
tially exact solution of the McCoy-Wu modgl10] (which is  noticing that under a duality transformation, which maps the
the two-dimensional Ising model with layered randomhessordered and the disordered phases of the system into each
and the field-theoretical investigations by Boyanovsky ancdbther, the layered structure of the system is preserved and the
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where the two fractal dimensions of the infinite cluster are
given by

d =1+z—-p8lv, )

andd;=d, /z. The distribution of cluster sizeR(N) at the
critical point asymptotically behaves as

R(N)dN=N""R(N/L%)dN, (6)

where 7=2+ B/(v,d,). This relation can be obtained by
j=1 generalizing the similar result for ordinary percolatidn.
Correlation between two sites with coordinatés,,j}
. and{i,,j,}, is defined as the expectation value of the con-
i= 1 2 ... L nectivity, 5({i1,j1}.{i2,j,}), which is 1, if the two sites be-
FIG. 1. Percolation on the square lattice with random bond oc-Iong _to the Same_clust_er and zero otherW|se_. He_re we mainly
cupation probabilities, which are perfectly correlated along the verSonsider correlations in the perpendicular direction

tical direction. The portion of the lattice having the same occupation
probability p is denoted by bold lines, whereas the corresponding

part of the dual lattice witfip=1—p is shown by dashed lines.

AN IO
Culiniz)=ig 2 Holinib iz (@

dual value of the local probability is transformed @s=1 ~ Where an average over the vertical coordingfe; j,=] is
—p [22]. Consequently the probability distributioR(p), is also performed. When correlations in the bulk are calculated

transformed intd®(p)=P(1—p) and the random system is we use periodic boundary conditiofBC), (thusi=L+1

; A . =1), take maximal distance between the sitég+i;
self-dual, if the probability distribution is symmetri€(p) o
—P(1-p) and thus the average value pis given by(p) +L/2, and average over the position The average bulk

—p.=1/2. Since there is one phase transition in the System;grrelatlons, calculated in this way, scale at the critical point
the self-duality point corresponds to the critical point and the

distance of the critical point,is defined as CO(L)y~L" ™, (8)

t=(p)—Pe- (1) wherey, =2p/v, . We also considered the system with free
In the presence of quenched disorder the mean value of lfoundaries ai=1 andi=L and calculated the correlations
physical observabled is calculated ag(®)].,, where between two surface sites. This end-to-end correlation func-
(---) denotes thermal averaging for a given realization oftion at the critical point asymptotically behaves as
the disorder and - - - ],, stands for disorder averaging. In
percolation the basic quantities of interest are the fractal and CL(LL)ECi(L)NLfﬂj, 9)
connectivity properties of the largest clusters. In the follow-

ing we use the concept of anisotropic scali@g], when the  \here the decay exponent is related to the surface fractal
correlation lengths in the two directiongyhich correspond  properties of the infinite cluster. Closing this section we
to the extensions of the largest clusjensvolve different  quote the values of the critical exponents for two-
critical exponentsg, ~|t| =" and¢~t""l. Thus the anisot-  dimensional ordinary percolatidi24]
ropy exponent
v0=4/3, 7O=5/24, 50=2/3. (10)
2= @)
vy . STRENGTH OF DISORDER: LIMITING CASES

The strength of disordek is related to the broadness of
the probability distributionP(p). In terms of the integrated
probability distribution,IT(p)=fEP(p’)dp’, we introduce
the probabilitiespq,, and pg, with the definitionsII(p4;4)
=1/4 andll(p3,,) =3/4. Since the central half of the distri-
bution is located in the regionpy,<p=<psu. its relative
width is measured by
where g is the critical exponent of the order parameter. At

is generally different from one. In the ordered phase(,
the number of points belonging to the infinite clustég
scales around the transition point as

No=LKtAN(Lt",Kt"), 3)

the critical point,t=0, fixing the ratioK/L?=0(1) we ob- _ P3a—Pua (11
tain 1- Pyt pua’
N~ L9 ~KY, (4)  what we can identify with the strength of disorder.
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In this paper, we used two specific formE of the distribu-
tion. For the bimodal distribution €@g<1/2g=1-0q):

1—-t 1+t _
Pbin(p)275(p—Q)+ 75(p—Q), (12

the critical point is located dt=0 and the strength of disor-
der is given byA,;,=(1—2q)/2q. Thus, as expected the n,
bimodal disorder is weak fag~1/2 and strong fog<1/2.

The other distribution we use has a power-law form

)1+1/D n,

1 (p _
P =——| = 0<p<p<l, 13
pow( P) 52p|p p<p (13

andP(1—p)= Ppom/(p)al(l—ﬁ), for p<p<1. The dis-
tance from the critical point is measured bi=(p - —
—1/2)/(D+1), and forp=1/2, i.e., fort=0 the distribution 99 9 9 4

is indeed symmetric. In this case the strength of disorder is k|G, 2. Structure of the percolation cluster in the extreme bimo-

i —_oD_ — ; _
given byApOW.—Z 1. Thus forD=0 we recover the ordi- dal distribution withp;=p,=q and ps=p,s=ps=q (here withq
nary percolation and the strength of disorder is monotoni- 1/4) |n a layer with extremely largsmal) probability there are
cally increasing withD. Therefore D will be often called as connectedempty units of typical lengthl ~1/q. The number of

the disorder parameter of the distribution. sites of the connected cluster at the other surface of a strip of width,
k, n. is given byn;~1/g, n,~1/g?, ny~1/g, andn,=0(1) (see
A. Weak disorder text). In the limit g— 0 the cluster ends &=4, thusng=0.

In the limit of weak disorder one usually decides aboutmake a statement about the valuenf{L) we consider par-
the relevance-irrelevance of the perturbation by performing gje| strips of widthk<L and introduce the quantity, , as
stability analysis at the ordinary percolation fixed point. Genpe typical number of bonds at theh (i.e., surfaci column
eralizing the method by Harrigs] the crossover exponent qf 5 cluster, which is connected to the other surface of the
due to correlated disorder is calculated as strip. Starting withk=1 we have two possibilities. For ex-

b=2—10=2/3, (14) tremely small probabilityp, =q there is no- surface cluiter in
the system, thus we have,=0. Otherwise, forp;=q, a
where we used(®)=4/3 in Eq.(10). Since¢>0, even weak Surface site is connected to all sites of a “connected unit” of
correlated disorder is a relevant perturbation, thus a new rarlengthl, thus we haven, ~1~1/q. Fork=2, if the probabil-
dom fixed point is expected to control the critical behavior ofity is extremely large in the second layer, tqm,= pzza

the model. then a surface cluster extends up to the second layer and its
vertical size, which is given by,, can be estimated as fol-
B. Strong disorder: Mapping to random walks lows (see Fig. 2 The end of a cluster is signalled by the fact

Next we turn to study the behavior of the system for eX_that in both columns unoccupied bonds are in neighboring
tremely strong disorder using the bimodal distribution in Eq.pos't'ons’ Wh.'Ch happens with a przobabllu&, from which

) Cs Y ..~ "the typical size of a clusten,~1/g°~n,/q, follows. Re-
(12) in the limitg—0. In this limiting case the percolation in ) ) — _
a given layer with a probabilitp; has a simple, anisotropic peatlngk this argument fop;=q, i=1,2,...k we obtain
structure(for an illustration see Fig.)2If this probability is k™ 1/.q ~Ng-1/0. Ngwlhavmg a small probability at the
extremely largep; =g, then here almost all bonds are occu- following layer, pi=q, i=12,...k and p;;=q, then
pied, except of a very small fraction of Since the typical only a fraction ofq of the sitesn, have a further connection,

distance between two nonoccupied bonds-id/q, the clus-  thus ni will be reduced by a factog giving N1~ nig.
ter in theith layer is composed of long connected units of NClusion of any further layer with an extremely small prob-
typical sizel. On the other hand, if the probability is ex- ability will reduce n; by a factor ofg, until we arrive at
tremely smallp; =g, then almost all bonds in this layer are Nj’=O(1), when for the next small probability layer we
unoccupied, except of a very small fraction @fSince the havenj,ﬂ_:O, thus the surface cluster ends at this distance.
typical distance between two occupied bond$-isl/q, the _ From this example we can rea)(il that tyenumbers are
cluster in thejth column is composed from long empty units €ither integer powers of 4/ n,~1/g”, for X,=0,1, ..., or
of typical sizel. Notice the duality in the structure of the two M«=0, if formally X,<0. Furthermore, we have the trans-
types of column. formation rules

With this prerequisite we consider the order parameter in / =
the surface colummg(L), which is the fraction of surface N1~ MG Pr+1=9 (15
sites belonging to a cluster of horizontal extentn order to ot nd,  Px+1=0,
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In g~ &12. (17)

Consequently the anisotropy exponemin Eq. (2) is for-
mally infinite for strong disorder.

Other results can be simply obtained by noticing that the
same type of RW mapping applies to the one-dimensional
RTIM [25], too, so that we can simply borrow the results
obtained in this case.

For bulk correlations one should consider the fraction of
realizationsp, for which a given bulk site belongs to a con-
| | ’ | | | |_| nected cluster of vertical size As was shown in Ref.26]

for these realizations thimermal averageof the position of
= a4 @ 9 § 9 9 g @ the RW has a surviving character. The fraction of these walks

is Qi .| —(3-\5)a
FIG. 3. lllustration of the RW mapping of percolation for a is given by[27,28: p ~L . ! consequentl;z/ the criti
given realization of the extreme binary distribution. Layers with @l @verage bulk correlations beir@f (L)~ (p)* have a

high,a (low, q) probabilities are drawn by thickhin) lines and decay exponent
the corresponding RW makes a step of unit length upwéddan- 3 \/E

ward9. The position of the RW, in thkth stepX, is related ton,,
the number of typical sites in tHeth layer of percolation, which are
connected to a given surface sitergs-q~ k. The surface cluster
extends to a distandeif X, =0, for allk=1,2, ... L, thusthe RW in the strong disorder limit.
has a surviving character. Finally, outside the critical point the mapping is related to
a biased RW, with a finite drift velocity, which is propor-
where in the second casg.;=0, if ngz=0(1). At this tional tot. From the surviving probability of biased RWs one
point we can formulate the condition that the surface ordebbtains for the correlation length critical exponé2b]
parameter in a given sampli& a rare realizationis mg(L)
=0(1), if n,=0(1), for all k=1,2,...L. For all other p{*) =2, (19
casesmg(L)=0. Consequently to calculate thaverage
valueof mg(L) it is enough to find the fraction of rare real- The scaling exponents and relations in EG5)—(19) are
izations p; for which my(L)=0(1), since[mg],~p; . To identical with _tho_se of the IRFP of the o_n_e-dimensi(_)nal
calculatep? we use a random walkRW) mapping(see an  RTIM [14], which is known to control the critical behavior
illustration in Fig. 3, in which to each disorder realization Of Several other random quantum spin chaii§,21] and
we assign a one-dimensional RW, which startXgt 0 and n_onequmbnum pha;e transitions in the presence of quenched
takes itskth step upwardsx, =1 (downwardsx,=—1) if d|sqrder[20]. At .thIS point our next question is about the
the corresponding bond occupation probability is extremelyf€9ion of attraction of the IRFP. For the RTIM, where the
large, p.=q (extremely smallp,= ). The position of the RW mapping can be generalized for Wez_iker disorder, any
9€, Pk=d y ,;pk - P small amount of randomness seems to bring the system into
wallfe;(r at thekth step, X=2j-,% is related ton, asn he IRFP[14], which claim is checked by intensive numeri-
~q "« Then, as argued before, the surface cluster extends,| caculationg28,25,26. There are, however, several other
upto a vertical distance if X,=0, for everyk=1.2,...L,  5qelsrandom quantum clock-model, Ashkin-Teller model
i.e., the RW has a surviving character.

21], directed percolatio20], S=1 random antiferromag-
At the critical point of the percolation problerts=0, the [21] P 120] g

. X . . - netic spin chain$18], etc] where weak disorder is not suf-
corresponding RW is unb'f‘f;fd' and the fraction of survivingicient to bring the system into the IRFP. In these cases either
L-step RWs scales ag ~L ~*“ Now the fraction of clusters

: ) ' the pure systems fixed point stays stable against weak disor-
wh|ch connect the two fre_e boundaries of the strip over gygr perturbations or the competition betwegnantum fluc-
distancel, and thus contribute to the average end-to-endyations and weak quenched disorder leads to conventional
correlations in Eq(9), is given by ({,)?, since at each site random scaling behavior. For the random percolation prob-
there should be an independent percolating surface clustaem the latter scenario is likely to happen, since the RW
which meet in the middle of the SyStem. Consequently thQnapp"]g cannot be extended for small disor(ﬂ@he trans-
average end-to-end correlations at the critical point scale &grmation law for the connected sites, /n,_,~q or 1/,
C?(L)~L~" thus the corresponding decay exponent in thejoes not hold around~1/2.) We are going to study this
strong disorder limit is given by issue numerically by MC simulations in the following

section.
=1 (16)

Using the RW mapping one can easily estimate the per-
pendicular size of the percolating clusters, which is given by
§||(L)~nL,2~qXL/2. Since the transverse fluctuations of un-  For intermediate strength of disorder we studied the per-
biased surviving RWs scale a§ ,~LY? we obtain in the colation by MC simulations. Since the critical properties of
strong disorder limit the problem are related to the connectivity properties of clus-

7 =— (18)

IV. NUMERICAL RESULTS
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FIG. 4. Estimates for the anisotropy exponent for different FIG. 5. Average bulk correlations vs the width of the strip for
strength of disorder. The straight lines connecting the points arélifferent strengths of disorder, fro =0 to D=1.75 in units of
guides to the eye, fab>D.,~1.2— 1.5 the anisotropy exponent is 0-25 from up to down. The typical error is generally smaller than
possibly divergent. In the inset extrapolation of the size-dependerihe size of the symbols for small, whereas for largeD it is at
effective anisotropy exponents is shown @r0.250.50.75, and Mmost twice of the size of symbols. The straight lines are least-square
1.0, up to down. fits.

ters for this purpose we implemented the standard Hosher®S defined in Eqs(8)_andb(9), respectively. In Fig. 5 the
Kopelman labeling algorithif29]. To decide about the shape 2verage bulk correlation§ (L) vs L is drawn in a log-log

of the lattice one should take into account the expected a0t The slope of the curves, which is related to the decay

isotropic scaling properties of the system, since the scalingXPonents, has a disorder dependence. ,
functions, as in Eq(3) depend on the ratio=L%K, where The exponents, calculated in this way together with the

z is an unknown parameter. To overcome these difficultie§!€CaY éxponent of the end-to-end correlatiggisare plotted
we used a striplike geometry, whégsL, thusr~0 for all in Fig. 6. As seen in Fig. 6 both exponents are monotonously
strip widths. In practice we ﬁab(z 1P ,Went uptol = 64 increasing with the strength of disorder and tend to saturate

. . : . . . at the respective IRFP values, given in E¢E3) and (16).
3nd _gnp_osedf pﬁ”%d.'c %C in the vgrur?al dlrectllon. fFor tr?eThe value of disorder strength, where the saturation takes
Elstrllgtlonhq r: E |s£or e:j wetutsebt € powe:c- T‘W o_rm_lln place, within the error of the calculation, is the same for the

g. (13), which has turned out to be successful in simi A'two exponents and it is compatible with the estimBte as

investigatiqns for raf.‘dom.q“":‘.”t“’.“ spin chajad). S_.ince calculated from the divergence of the dynamical exponent in
averaging in the vertical direction in E{7) (and also in the Fig. 4

horizontal direction for bulk correlationss equivalent to a We can thus conclude that the critical behavior of the

partial average over quenched disorder it was enough to CoNzndom percolation process has a weak-to-strong disorder
side_r only a Iimitedl number{_lo— 20) realizations. crossover. For weaker disorddd,<D.,, what we call the

. First, we det_grmme the amsotropy equnebly calcul_at- intermediate disorder regiméhe critical behavior of the sys-
ing the probability d'_St”bUt'on of clusters in E(p). Wh|le tem is controlled by a line of conventional fixed points. Here
the decay exponentin Eqg. (6) has only a weak anisotropy e anisotropy exponent is finite, and together with the order-
dependence, the scaling functi®fy) turned out to be sen- parameter exponents,, and »$ , monotonously increasing
sitive of the value ofz. As we noticed in the numerical cal- yith the strength of disorder. In thgtrong disorder regime
culationsR(y) has two different regimes. For smaller valuesD>D.,, the critical behavior of the system is controlled by
of the parametery=N/L*<y*, the finite size effects are the IRFP. Here the anisotropy exponent is formally infinity
negligible and the scaling function is approximately con-

stant. Fory>y*, when the largest clusters touch the bound- ——T—

aries, the scaling function has a characteristic variation. Mea- 04 1 . P
suring the position of/* for different widthsL we obtained 03 ° .
a series of effective anisotropy exponents, which are then 02¢ ¢ s ]
extrapolated td.—o0, as shown in the inset to Fig. 4. This ' —
procedure is repeated for several disorder parameters and the 1o 0 §ee]
extrapolated anisotropy exponents are plotted in Fig. 4. Un- 0.8 [ o % © 1
fortunately, with this method we could not go to very strong I ni i
disorder, while the crossover region cannot be clearly located o6 t— .

for D>1. However, it is clear from the available data tkat 0 05 1 15 2
is monotonically increasing with the strength of disorder and D

it is I|ke|y that z will be divergent forD>D_~1.2—1.5. FIG. 6. Bulk (,) and surface ﬁi) decay exponents vs the

In order to obtain more information about the critical be- strength of disorder. Values at the IRFP, as given in Et®). and
havior of the system we have calculated the bulk and thei6), are denoted by dashed lines. Two typical error bars are also
end-to-end average correlation functions at the critical pointindicated.

056113-5



R. JUHASZ AND F. IGLOI PHYSICAL REVIEW E 66, 056113 (2002

J; and transverse fields [31], the critical behavior of which

121°%a t;étst g can be studied by the SDRG methldd]. In this procedure
Dg t=22 & the couplings and transverse fields are put in descending or-

= o =40 ° der and the strongest terms are successively decimated out
. 8 strong y \ '
25 11y D " 1 whereas neighboring terms are replaced by renormalized val-
§ 0o ] ues. Decimating the strongest coupling, Sayyields a new
- 6] g effective spin cluster in a renormalized transverse field of

1.0 0 strength

o
0.2 0.1 0 0.1 ogz
1.2 h= 3 @ (22)
Q J '

FIG. 7. Scaling plot of the bulk correlation function with

=2 at a disorder strength=0.75. . . .
! g whereh; andh, are the original transverse fields acting at

and the other critical exponents have no disorder depent—he two end-sp|n§ O‘ﬂ?'. S|m|I§1rIy, if, the spin in the stron-
dence gest transverse field, is decimated out, then a new renor-

The nonuniversal nature of the critical behavior in themallzed coupling is generated between remaining spins,

intermediate disorder regime is possibly connected to th(¥"hi0h is of the form in Eq(21), by interchangindh; —J;,

presence of a marginal operator, which should have vanisHNhl';:?h'S gi_ue go dyallf[y. h that th ‘ d
ing anomalous dimensionx,=0, in the entire disorder € disorder Is strong enough, so that tne System under

range, 6<D<D... In our case the disorder perturbation is renormalization is in the attractive region of the IRFP, the

connected to the local energy-density operator, for which th(%EOdel specific prefactor @ in Eq. (21) does not matter and

marginality condition, according to the Harris criterion in Eq. tr:ng::C;I ?ggﬁgggs r?c:Svg\?(la\:eir:E}ilh-li-tgz rteél?g Oif estr(?cr:rg at-

e RTIM. For smaller values @, like in percolation, when
e prefactor in Eq(21) is larger than one, for weak disorder
some renormalized couplings and transverse fields are larger
than the decimated ones. If this happens frequently, i.e.,
when the disorder is too weak, then the SDRG method is no
longer valid and the critical behavior of the model is ex-
pected to be controlled by a conventional random fixed
point. This is exactly what we obtained by MC simulations.
We conclude our paper with two remarks. First, for strong
enough disorder the critical behavior of both ordinary and
directed percolatioh20] is controlled by the same IRFP, thus
the original anisotropy between the two pure problems does
not make any influence about tligtrongly random critical
behavior. Our second remark concerns possible Griffiths ef-
V. DISCUSSION fects in the random percolation problem. Using the analogy
. L . with random quantum spin chains for strong disorder some
I.n th'S. paper, bond percolation is studied on the squar‘?:iynamical quantities of the random percolation problem are
lattice V.V'th strictly correlated, Iayered. randomness. The§ingular also outside the critical point. For example the sus-
phase diagram of the problem as a function of the strength ot =~ = . , . ity
disorder contains two regions. For strong enough disordef€PUbility in a uniform field,H diverges asy~H =",
the critical properties of the model are controlled by an IRFP,a”d the ver’tlcal correlation function decays algebraically as
the properties of which are exactly known by a RW mappingCy(1)~1~%*, where z’ is a finite dynamical exponent,
For weaker disorder, in the intermediate disorder regime th#hich depends on the distance of the critical point.
critical behavior is found to be controlled by a line of con-
ventional random fixed points, where both the ar_1isotropy ACKNOWLEDGMENTS
exponent and the order-parameter exponents are disorder de-
pendent. The correlation length exponent, however, stays We are indebted to Jae Dong Noh, Heiko Rieger, and Lol
constant at its marginal value. Turban for stimulating discussions. This work has been sup-
This type of critical behavior is very similar to that ob- ported by the Hungarian National Research Fund under
tained in a class of random quantum spin chdi2$,20.  Grant No. OTKA TO34183, TO37323, M028418, and
This close similarity can be understood by noting the relatiorM36803, by the Ministry of Education under Grant No.
between percolation and th@—1 limit of the Q-state fer- FKFP 87/2001, by the EC Center of Exceller{i€&rant No.
romagnetic Potts model. With layered randomness the twotCA1-CT-2000-70029 and the numerical calculations by
dimensional Potts model in the Hamiltonian linf80] is  NIIF Grant No. 1030. The Laboratoire de Physique des Ma-
equivalent to a quantum Potts chain, with random couplingseriaux is UniteMixte de Recherche Grant No. 7556.

(14) requires the conditiogp=0, thusy, =2. To verify this
scenario we have calculated the average bulk correlatiom
function CE(L,t) outside the critical point, at a disorder
strengthD =0.75 which is in the middle of the intermediate
disorder regime. According to scaling considerations

Co(L,ty=L"C(tLYm), (20)

thus from an optimal scaling collapse can be determined.
As shown in Fig. 7 the scaling behavior@ﬁ(L,t) is com-
patible with the conjectured value of =2 and thus with the
marginality condition.
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